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Abstract

The testis has been identified as the organ in which a large number of tissue-enriched

genes are present. However, a large portion of transcripts related to each stage or cell type

in the testis still remains unknown. In this study, databases combined with confirmatory

measurements were used to investigate testis-enriched genes, localization in the testis,

developmental regulation, gene expression profiles of testicular disease, and signaling path-

ways. Our comparative analysis of GEO DataSets showed that 24 genes are predominantly

expressed in testis. Cellular locations of 15 testis-enriched proteins in human testis have

been identified and most of them were located in spermatocytes and round spermatids.

Real-time PCR revealed that expressions of these 15 genes are significantly increased dur-

ing testis development. Also, an analysis of GEO DataSets indicated that expressions of

these 15 genes were significantly decreased in teratozoospermic patients and polyubiquitin

knockout mice, suggesting their involvement in normal testis development. Pathway analy-

sis revealed that most of those 15 genes are implicated in various sperm-related cell pro-

cesses and disease conditions. This approach provides effective strategies for discovering

novel testis-enriched genes and their expression patterns, paving the way for future charac-

terization of their functions regarding infertility and providing new biomarkers for specific

stages of spematogenesis.
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Introduction

The testis has been identified by RNA sequencing as the organ in which the largest number of

tissue-enriched genes is expressed among various organs. It has been estimated that expres-

sions of more than 1000 genes are enriched in the testis [1]; whereas, on average, there are

approximately 200 signature genes in each tissue [2]. Tissue-enriched or tissue-specific genes

are essential for the growth and development of specific cells and organs [3]. Thus, characteris-

tic processes that occurred in germinal cells in the testis, including meiosis, genetic recombina-

tion, spermatogenesis, and spermiogenesis may largely be attributed to a number of

differential gene expressions. Spermatogenesis is a complex process that is orchestrated by

expression of multiple genes at various stages containing particular cell types, such as sper-

matogonial stem cells, spermatogonia, spermatocytes, and spermatids [4]. In addition to ger-

minal cells, the somatic Sertoli cells play a role in testis formation and provide an essential

environment for spermatogenesis [5], and Leydig cells produce androgen, which plays a key

role in the regulation of spermatogenesis and undergo changes in gene expression [6, 7]. How-

ever, a large portion of transcripts and proteins related to each stage or cell type as well as their

functions still remains unknown.

Investigation of gene expression and function during spermatogenesis has been hampered

by a lack of immortalized cell lines for each stage [8]. Alternatively, testis transcriptome micro-

array analysis based on Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/

geo) followed by protein profiling using immunohistochemical data from the Human Protein

Atlas portal (www.proteinatlas.org) is a useful tool for discovering highly expressed genes in

each stage of spermatogenesis in the testis. Furthermore, gene expression profiles under various

developmental, disease, and knockout conditions produced in GEO microarray datasets offer a

platform for functional genomic studies of spermatogenesis stage-specific gene expression.

Using these sources combined with confirmatory gene expression measurements and path-

way analysis, in this study, protein localization and signaling pathways of 15 testis-enriched

genes were analyzed. The objectives of this study were to identify novel testis-enriched genes

using gene expression profiles and analyze protein localization, developmental regulation and

biological implications of testis-enriched genes in humans and mice. The current approach

provides an effective strategy for discovering novel testis-enriched genes and their unique

stage-specific expression, paving the way for future studies of normal development of the testis

and associated diseases.

Materials and methods

Microarray data mining

The microarray-based, high-throughput gene expression data were obtained from the GDS

DataSet (GDS) of the GEO repository in the National Center for Biotechnology Information

(NCBI) archives (www.ncbi.nlm.nih.gov/geo). For analyzing tissue distribution pattern of

gene expression in 12 male mouse tissues and 10 man tissues, GDS3142 for mice and GDS596

for humans were downloaded and sorted (Tables 1 and 2) as described in our previous reports

[9, 10]. Also, gene expression patterns in mouse sperm cells (GDS2390), developing mouse tes-

tis (GDS605, GDS606 and GDS607), semen samples collected from 14 teratozoospermic indi-

viduals aged 21–57 (GDS2697), and polyubiquitin knockout mice (GDS3906) were examined.

Animal use and sample preparation

All animal care and procedures were approved by the Institutional Animal Care and Use Com-

mittee (IACUC) at The Ohio State University. Mice were raised under ad libitum feeding
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conditions in a mice housing facility at The Ohio State University. Mice were euthanized by

carbon dioxide inhalation followed by cervical dislocation. For isolation of total RNAs, testis,

Table 1. Mouse testis-enriched genes based on GDS3142.

Gene Fold Testis Ovary Muscle Liver Brain Lung Kidney Adipose Thymus Heart Spleen SI P

value

Testis

enrichment

Location

in mouse

testis

Tnp1 276 21266 71 72 91 78 81 81 66 76 77 74 81 <
.0001

[43] –

Ldhc 242 16560 73 70 61 64 65 65 59 72 87 59 78 <
.0001

[13] [14, 15]

Prm1 214 12302 63 56 54 54 54 55 55 63 62 56 60 <
.0001

[44] [45]

Prm2 176 20955 99 125 109 99 107 104 100 134 176 100 156 <
.0001

[46] [46]

Akap3 139 11583 75 80 85 74 79 80 70 92 112 68 100 <
.0001

[47] [47]

Smcp 125 10373 70 73 74 66 69 163 71 80 93 74 79 <
.0001

Fig 1 [48–50]

Odf1 117 11076 82 90 100 80 90 99 94 106 110 82 109 <
.0001

Fig 1 –

Crisp2 110 7771 65 66 70 69 68 63 73 67 81 83 71 <
.0001

Fig 1 –

Tcfl5 98 7086 73 69 70 88 66 71 68 70 78 67 75 <
.0001

[51] [51]

Odf2 76 7462 108 96 75 118 99 93 86 123 88 94 104 <
.0001

[52] [52]

Phf7 69 13455 174 318 196 118 141 219 170 251 166 216 169 <
.0001

Fig 1 [17]

Tcp11 47 7904 146 180 177 132 159 157 156 196 173 157 207 <
.0001

[53] [53]

Actl7b 40 6562 120 144 167 142 166 135 135 161 356 128 173 <
.0001

[54] [54]

Ybx2 37 5221 137 147 110 104 109 146 135 160 235 101 157 <
.0001

[55] –

Gapdhs 36 5894 121 182 145 103 107 133 142 230 290 110 240 <
.0001

Fig 1 –

Spink2 35 4130 104 118 120 99 124 102 133 126 149 97 136 <
.0001

[20] [20]

Zpbp 26 2178 81 77 79 79 79 82 84 94 106 80 91 <
.0001

[26] [56]

Spata6 23 3652 168 112 89 83 205 208 171 260 154 156 113 <
.0001

[57, 58] [57, 58]

Actl7a 23 2628 101 119 112 92 97 94 105 143 183 104 128 <
.0001

[54, 59] [54]

Ddx4 21 1350 85 56 57 75 57 59 61 62 61 62 58 <
.0001

Fig 1 –

Efhc1 19 2126 234 80 84 77 196 74 94 105 104 73 90 <
.0001

[23] [23]

Nek2 18 3008 214 68 75 72 124 88 82 627 74 169 285 <
.0001

[60, 61] [60, 61]

Stag3 16 1324 81 72 85 71 73 75 77 112 84 86 97 <
.0001

[62, 63] –

Zmynd10 15 2133 145 123 123 111 149 291 102 100 148 109 122 <
.0001

Fig 1 –

https://doi.org/10.1371/journal.pone.0175787.t001
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muscle, liver, brain, lung, kidney, adipose tissue, thymus, spleen, and small intestine were col-

lected from 3-month-old FVB mice (n = 3) using Trizol reagent (Invitrogen, Carlsbad, CA,

Table 2. Human testis-enriched genes based on GDS596.

Gene Fold Testis Ovary Muscle Liver Brain Lung Kidney Adipocyte Thymus Heart P

value

Testis

enrichment

Location

in human

testis

Location

in mouse

Testis

(Table 1)

PRM2 861 12387 6 55 13 12 8 12 7 4 13 <
.0001

Fig 1 [64] [46]

PRM1 800 37144 42 135 24 11 63 47 15 11 68 <
.0001

[65] [64] [45]

TNP1 186 17960 27 284 66 22 47 135 94 21 174 <
.0001

Fig 1 [66] –

ODF2 181 4179 6 67 27 13 12 18 16 11 37 <
.0001

[67] [67] [52]

SPATA6 107 1742 8 44 15 8 7 22 13 9 20 <
.0001

Fig 1 Fig 2B [57, 58]

PHF7 77 7891 82 417 47 77 47 62 53 46 86 <
.0001

[17] Fig 2A [17]

CRISP2 68 4526 53 396 43 25 8 10 47 4 14 <
.0001

[68] [69] –

SPINK2 63 7706 52 257 134 86 106 67 63 125 215 <
.0001

[70] Fig 2A [20]

NEK2 47 1427 28 71 13 29 7 16 7 75 28 <
.0001

Fig 1 [71] [60, 61]

LDHC 46 3625 40 254 70 22 38 19 134 25 102 <
.0001

Fig 1 Fig 2A [14, 15]

SMCP 39 2082 25 172 53 29 15 64 31 18 76 <
.0001

[72] [72] [48–50]

YBX2 37 8120 67 719 224 258 70 337 108 46 160 <
.0001

Fig 1 Fig 2C –

ZPBP 35 3012 87 128 50 64 73 74 24 31 236 <
.0001

[26] Fig 2B [56]

ACTL7A 35 1938 17 245 38 27 21 59 28 16 55 <
.0001

[73] Fig 2B [54]

TCP11 33 7549 37 632 227 160 122 293 196 78 340 <
.0001

[74] Fig 2A [53]

ZMYND10 32 1505 10 165 42 18 29 66 22 8 60 <
.0001

[75] Fig 2C –

ACTL7B 30 1876 41 184 79 73 17 38 62 37 27 <
.0001

[73] Fig 2B [54]

ODF1 25 5549 183 493 223 130 80 300 145 72 361 <
.0001

[76] Fig 2D –

AKAP3 24 1166 23 120 59 39 33 61 18 16 69 <
.0001

[77–79] [77] [47]

GAPDHS 21 3357 29 250 216 192 86 96 120 73 401 <
.0001

[80] Fig 2D –

DDX4 19 447 7 115 6 6 3 33 5 4 27 <
.0001

[81] [81] –

TCFL5 14 2611 11 259 79 562 109 251 216 182 57 <
.0001

[82] Fig 2A [51]

STAG3 13 1885 44 216 140 130 92 217 57 224 141 <
.0001

[62] Fig 2C –

EFHC1 13 407 18 98 53 16 10 32 13 29 14 <
.0001

Fig 1 Fig 2A [23]

https://doi.org/10.1371/journal.pone.0175787.t002
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USA) [11]. Total RNAs from the adult human kidney, liver, lung, heart, muscle, testis, thymus,

and brain were purchased from Agilent Technologies (Santa Clara, CA, USA) and adult

human RNA from adipose tissue was purchased from Clontech Laboratories (Mountain View,

CA, USA). For RNA isolation from mouse testis at 10 days postpartum (dpp), 21 dpp, and 91

dpp (three months postpartum), C57BL/6 mice (n = 4) were euthanized and both testes were

harvested.

Reverse transcription PCR (RT-PCR)

To measure the quantity of RNA, a Nanodrop spectrophotometer (Thermo Scientific, Wil-

mington, DE) was used. The RNA samples were stored at -80˚C until use. Approximately 1 μg

of RNA was reverse-transcribed in a 20 μL total reaction to cDNA using Moloney murine leu-

kemia virus (M-MLV) reverse transcriptase (Invitrogen). The thermal cycle of the reverse tran-

scription was 65˚C for 5 min, 37˚C for 52 min, and 70˚C for 15 min. Exactly 1 μL of cDNA

samples was used as a template for PCR in a 25 μL total reaction with AmpliTaq Gold DNA

polymerase (Applied Biosystems, Carlsbad, CA). The conditions for this reaction were 95˚C

for 1 min 30 s, 33 cycles of 94˚C for 30 s, 55˚C for 1 min, 72˚C for 1 min, with an additional

extension step at 72˚C for 10 min. PCR products were separated by using 1% agarose gel elec-

trophoresis. Forward and reverse primers for both humans and mice listed in supporting

information were designed on different exons for multi-exon genes to avoid genomic DNA

contamination.

Analysis of protein expression profiles from the Human Protein Atlas

Data visualizing immunohistochemically the expression patterns of selected proteins in

human testes were obtained from the Human Protein Atlas portal (www.proteinatlas.org). A

total of 15 testis-enriched proteins were analyzed for their localization in the human testis: ten

of them have been published in terms of their localization in mouse testis, but not in human

testis, and the rest of them have not been published regarding their localization in both human

and mouse testis.

Real-time PCR

Quantitative real-time PCR (qPCR) was performed on an ABI 7300 Real-Time PCR instru-

ment (Applied BioSystems, Foster City, CA) by using AmpliTaq Gold polymerase (Applied

BioSystems) with SYBR green detection dye. Cyclophilin (CYC) was used as a housekeeping

gene. Reactions were performed in duplicate 25μL volumes and conditions for the qPCR were

95˚C for 10 minutes followed by 40 cycles of 94˚C for 15 seconds, 60˚C for 40 seconds, 72˚C

for 30 seconds, and 82˚C for 33 seconds. Relative quantification of gene expression was deter-

mined by using the 2-ΔΔCT method [12].

Signaling pathway analysis

Signaling pathways of spermatocyte- or spermatid-enriched proteins were analyzed using

Pathway Studio (v 11.2.5.9, Elsevier, Amsterdam, Netherland). A list of 15 testis-enriched pro-

teins was entered into Pathway Studio. The resulting pathways were verified through the

PubMed/Medline hyperlink embedded in each node.

Statistical analysis

For comparison of gene expression in testis versus other tissues, one-way ANOVA followed by

a Fisher’s protected least significant difference test was performed using SAS version 9.2 (SAS
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Institute Inc., Cary, NC). A Student’s t test was conducted to compare the difference between

two means. Comparison of multiple means was conducted by one-way ANOVA followed by a

Tukey’s post hoc test. The significance level was set at p< 0.05.

Results

Microarray analyses identified common testis-enriched genes for the

mouse and human

Comparative analysis of GEO DataSets (GDS3142 for mice and GDS596 for humans), a public

microarray repository, revealed that expressions of 24 genes in both the mouse and human tes-

tis are more than 10-fold higher than an average expression value of other tissues (Tables 1

and 2). For example, murine Tnp1 and human TNP1 expressions are 276- and 186-fold greater

in the mouse and human testis, respectively, than an average value of other tissues. In addition,

these 24 genes are expressed at very low levels in the ovary, showing that they are male-specific

genes. Our literature search revealed that some, but not all, genes were reported for testis

enrichment and protein cellular location in testis. For instance, testis-specific expression of

murine Ldhc gene and cellular protein location of LDHC were reported in the mouse testis

[13–15], but not in human testis. In this study, testis enrichment of selected genes was con-

firmed by RT-PCR (Fig 1) and their localization profiles in humans were explored through the

Human Protein Atlas (Fig 2).

RT-PCR confirmed testis enrichment of selected genes

To validate the microarray data, RT-PCR was performed for murine Smcp,Odf1, Crisp2, Phf7,
Gapdhs,Ddx4 and Zmynd10 and human PRM2, TNP1, SPATA6, NEK2, LDHC, YBX2 and

Fig 1. RT-PCR of mouse and human testis-enriched genes. Expression of mouse and human testis-

enriched genes in various tissues are presented. Te: testis, M: muscle, Li: liver, Br: brain, Lu: lung, K: kidney,

F: fat, H: heart, Sp: spleen, Int: intestine, Thy: thymus. Murine cyclophilin (Cyc) and human cyclophilin (CYC)

genes were used as loading controls for an equal amount of cDNA.

https://doi.org/10.1371/journal.pone.0175787.g001
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EFHC1, which have not been reported previously for expression in the testis. To prevent PCR

saturation effects during amplification, the number of PCR cycles was reduced until the satura-

tion no longer occurs. These genes showed testis-enriched expression patterns among various

tissues (Fig 1), which is consistent with the GEO DataSets (Tables 1 and 2).

Analysis of immunohistochemical data showed protein expression in

specific stages of human testis

With the very latest version of the Human Protein Atlas, cellular location of several testis-

enriched genes in humans was analyzed. When these locations were reported in mouse, they

were grouped in Fig 2A and 2B; otherwise they were grouped in Fig 2C and 2D. As shown in

Fig 2, PHF7, SPINK2, LDHC, TCP11, EFHC1, and TCFL5 proteins were located in earlier

stage cells (Fig 2A) than cells expressing ZPBP, ACTL7A, ACTL7B, and SPATA6 (Fig 2B).

PHF7, SPINK2, LDHC, TCP11, EFHC1, and TCFL5 were localized in pachytene spermato-

cytes (PC) and round spermatids (RS). In detail, SPINK2 was expressed strongly in the cyto-

plasm of pachytene spermatocytes, LDHC showed expression in the tail of spermatozoa (SZ),

and EFHC1 was highly expressed in Sertoli cells (ST) (Fig 2A). ZPBP was uniquely detected in

the developing acrosomal granules (AG) of round spermatids. ACTL7A was expressed in

round spermatids and exclusively in the acrosome granules, with a lesser degree in spermato-

zoa tails. ACTL7B showed a stronger expression than SPATA6 in round spermatids (Fig 2B).

Fig 2. Immuno-localization of testis-specific genes in human testis based on figures obtained from the

Human Protein Atlas (www.proteinatlas.org). Among genes that have been published regarding their

localization in mouse testis, but not in human testis, proteins expressed in both pachytene spermatocytes and

round spermatids (A) and in round spermatids (B) are described. Genes that have not been published regarding

their localization in both human and mouse testis are displayed for their expression in both pachytene sperm-

atocytes and round spermatids (C) and in round spermatids (D). In addition, proteins that are expressed in early

spermatogenic cells (type A and B spermotogonia) are presented as non-testis-specific controls (E). A: type A

spermatogonia, B: type B spermatogonia, PC: pachytene spermatocytes, RS: round spermatids, ES: elongating

spermatids, AG: acrosomal granule, SZ: spermatozoa, ST: sertoli cells, LD: Leydig cells.

https://doi.org/10.1371/journal.pone.0175787.g002
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Other testis-enriched proteins shown in Fig 2C and 2D, such as YBX2, ZMYND10, STAG3,

ODF1, and GAPDHS, have not been published regarding their localization in both human

and mouse testis. YBX2 and ZMYND10 were strongly localized in the cytoplasm of pachytene

spermatocytes (PC) and, to a lesser degree, the nucleus of pachytene spermatocytes in the case

of ZMYND10. STAG3 was expressed in the nucleus of pachytene spermatocytes. These pro-

teins were also present in round spermatids (RS) except for low expression of ZMYND10 in

round spermatids. In addition, YBX2 was detected in the tail of spermatozoa (SZ), and

ZMYND10 showed expression in Leydig cells (LD) (Fig 2C). ODF1 and GAPDHS were

expressed in round spermatids (RS). Also, GAPDHS showed expression in the tail of sperma-

tozoa (SZ). ODF1 was expressed in elongating spermatids (ES) with developing tails (Fig 2D).

In summary, most testis-enriched proteins selected in this study are expressed after the

spermatogonia stage. Their gene expression profiles curated in GDS2390 also showed a signifi-

cant increase of expression during the stages of pachytene spermatocytes and round sperma-

tids (Table 3). On the other hand, two non-testis-enriched proteins, COL1A2 and ZBTB16,

were mainly expressed in the early-stage cells such as type A and type B spermatogonia (Fig

2E) and similarly, their gene expression profiles showed significantly higher mRNA expression

in spermatogonia stages (Table 3). Therefore, whether expression of testis-enriched genes is

regulated during testis development was further analyzed.

Expression of testis-enriched genes showed an increasing pattern

during normal testis development

qPCR revealed that expression of selected testis-enriched genes is significantly increased dur-

ing testis development. To investigate stage-specific expression patterns, 10 days postpartum

(dpp) with mostly spermatogonia, 21 dpp when spermatocytes are the most abundant cell

Table 3. Differential gene expression in four types of spermatic cells according to GDS2390.

Gene Type A spermatogonia Type B spermatogonia Pachytene spermatocytes Round spermatids

Testis-enriched genes

Phf7 62.3 ± 4.3b 385.0 ± 327.7ab 2877.8 ± 316.3ab 3073.8 ± 14.9a

Spink2 36.2 ± 4.7b 414.7 ± 392.7ab 2576.3 ± 181.8a 2527.2 ± 45.7a

Ldhc 34.5 ± 5.1b 2462.1 ± 2433.8ab 6269.1 ± 294.1a 6783.0 ± 205.1a

Tcp11 87.1 ± 4.6c 435.2 ± 356.3bc 2659.4 ± 144.6b 4347.4 ± 19.3a

Efhc1 66.1 ± 5.5b 288.3 ± 242.1ab 2012.3 ± 19.5ab 2476.6 ± 69.3a

Tcfl5 635.4 ± 68.0c 943.9 ± 247.0c 2967.8 ± 81.8a 2408.3 ± 77.9b

Zpbp 24.1 ± 1.4bc 204.4 ± 164.8c 1629.2 ± 224.3ab 3194.8 ± 49.0a

Actl7a 15.2 ± 4.0b 48.8 ± 36.0b 131.7 ± 22.6b 2097.9 ± 28.8a

Actl7b 58.8 ± 11.2c 253.1 ± 180.5bc 1120.6 ± 67.4b 3337.9 ± 223.4a

Spata6 47.2 ± 1.8c 133.3 ± 68.9c 784.1 ± 14.7b 2767.5 ± 143.3a

Ybx2 131.7 ± 39.9b 651.6 ± 508.2ab 3982.7 ± 107.3a 4034.0 ± 130.1a

Zmynd10 2.4 ± 0.6c 323.0 ± 321.6bc 2457.2 ± 121.3a 997.2 ± 44.6b

Stag3 725.9 ± 34.6b 984.0 ± 124.2b 2231.6 ± 124.7a 1762.4 ± 169.8ab

Odf1 3.7 ± 0.4b 62.0 ± 58.0b 275.9 ± 69.5b 3558.2 ± 185.0a

Gapdhs 71.3 ± 8.8c 122.1 ± 71.8bc 270.3 ± 0.3b 3604.4 ± 141.2a

Non-testis-enriched genes

Col1a2 2743.6 ± 314.6a 3338.4 ± 173.2a 111.0 ± 18.6b 146.4 ± 1.0b

Zbtb16 304.7 ± 42.8a 178.9 ± 56.9ab 21.0 ± 1.2b 33.8 ± 13.0b

Means ± SEM are shown. Different superscript letters indicate significant differences between types of cells.

https://doi.org/10.1371/journal.pone.0175787.t003
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type, and 91 dpp representing an adult stage with spermatids were selected. Compared to 10

days postpartum (dpp), expression of these selected genes was significantly increased at 21 dpp

after weaning and/or at 91 dpp (three months postpartum) when sexual maturation occurs

(Fig 3A–3D). These data are consistent with the microarray database in GDS605, GDS606,

and GDS607, which also shows an increasing pattern of these genes during the period of 0

through 35 dpp (Table 4). It suggests that expression of these testis-enriched genes is up-regu-

lated during testis development and plays a role in later stages of spermatogenesis. In contrast,

expression of both Col1a2 and Zbtb16 was significantly decreased at 21 dpp (Fig 3E), and this

pattern was also shown in GDS605, GDS606, and GDS607 (Table 4), suggesting that these

non-testis-enriched genes may be involved in early stages of spermatogenesis rather than the

later stages.

In addition, our further data analysis showed that, compared to fertile normal males,

expression of these testis-enriched genes was significantly decreased in teratozoospermic

patients with abnormal sperm morphology according to GDS2697 (S1 Table). It appears that

those testis-enriched genes are involved in normal testis development without morphological

defects and may serve as a biomarker for teratozoospermic condition. Moreover, according to

GDS3906, polyubiquitin knockout resulted in a decreased expression pattern of testis-enriched

genes at 28 dpp compared to wild-type (S1 Table).

Fig 3. Real-time PCR analysis of developmental expression patterns of testis-specific genes in

mouse testis. Quantitative real-time PCR (qPCR) results are presented for testis-related genes which are

described in Fig 2 at 10, 21 and 91 days postpartum (dpp). According to categories of Fig 2, genes expressed

in both pachytene spermatocytes and round spermatids (A) and in round spermatids (B) are presented for

expression patterns. Among genes that have not been published for localization, genes expressed in both

pachytene spermatocytes and round spermatids (C) and in round spermatids (D) are examined for expression

patterns. In addition, non-testis-specific controls that are expressed in early spermatogenic cells (type A and B

spermotogonia) are presented (E). The Y-axis represents relative expression value using cyclophilin (Cyc) as

a housekeeping control. Each bar represents mean ± SEM. To compare means, one-way ANOVA was

followed by Tukey’s post hoc test. Different letters above the bars indicate significant differences between

developmental time points.

https://doi.org/10.1371/journal.pone.0175787.g003
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Testis-enriched genes are associated with various biological pathways

in sperm

Signaling pathway analysis was conducted to identify corresponding pathways related to

sperm-related biological functions and disease conditions. Schematic illustration was drawn to

identify cellular and metabolic processes regulated by testis-enriched genes and showed that at

least 12 out of 15 spermatocyte- or spermatozoa-enriched proteins were putatively associated

with various sperm-related cell processes, clinical parameters, and disease conditions (Fig 4).

Discussion

In this study, testis-enriched genes in human and mouse were arranged based on microarray

based-GEO database, and 15 genes that have not been published regarding their localization in

human (Table 2) were selected to analyze their protein expression in testis using immunohis-

tochemical data from the Human Protein Atlas portal.

Several proteins expressed in pachytene spermatocytes and round

spermatids of human testis were analyzed

Proteins localized in pachytene spermatocytes (PC) and round spermatids (RS) were shown in

Fig 2A and 2C. PHF7 is a male-specific transcription factor for germ cell development and sex-

ual identity [16, 17]. SPINK2 is a Kazal-type serine protease inhibitor or an acrosin-trypsin

inhibitor that is synthesized in the testis [18–20]. LDHC is an enzyme related to aerobic glycol-

ysis in spermatozoa for energy production, and it regulates the sperm motility and capacitation

[21]. Based on its localization, we postulated that LDHC is associated, not only with ATP gen-

eration in mature spermatozoa, but also with development of germ cells. TCP11 is a receptor

Table 4. Differential gene expression during testis development based on GDS605, GDS606 and GDS607.

Gene 0–3 dpp 8–10 dpp 18–20 dpp 30–35 dpp

Testis-enriched genes

Phf7 151.7 ± 22.5b 153.2 ± 7.2b 5045.2 ± 421.8a 6208.0 ± 450.3a

Spink2 122.5 ± 8.7b 99.1 ± 8.6b 1708.5 ± 221.6a 2506.2 ± 596.5a

Ldhc 48.4 ± 45.4c 5.4 ± 1.5c 5935.9 ± 669.2b 8665.4 ± 572.5a

Tcp11 23.9 ± 1.6c 26.9 ± 1.3c 1256.9 ± 243.3b 4906.3 ± 307.0a

Efhc1 46.7 ± 10.8c 40.3 ± 4.8c 829.2 ± 175.9b 1299.2 ± 58.4a

Tcfl5 68.8 ± 8.0b 139.0 ± 14.1b 845.1 ± 201.5a 1272.3 ± 50.8a

Zpbp 8.8 ± 2.3c 7.5 ± 3.1c 265.0 ± 91.9b 1004.4 ± 33.0a

Actl7a 29.0 ± 6.1b 32.3 ± 6.5b 40.6 ± 18.6b 1705.5 ± 183.3a

Actl7b 18.0 ± 4.8c 12.0 ± 0.8c 427.2 ± 152.6b 1892.4 ± 96.4a

Spata6 96.7 ± 10.8b 98.0 ± 8.4b 525.0 ± 103.2a 687.2 ± 28.6a

Ybx2 10.7 ± 1.8c 19.5 ± 4.8c 1957.4 ± 601.1b 4059.9 ± 158.9a

Zmynd10 6.1 ± 1.5b 5.3 ± 0.9b 1574.3 ± 553.7a 989.3 ± 70.0a

Stag3 6.6 ± 0.9c 177.8 ± 30.1b 611.0 ± 93.2a 560.8 ± 11.0a

Odf1 62.7 ± 9.4b 51.8 ± 6.3b 72.0 ± 9.6b 5039.2 ± 517.1a

Gapdhs 37.4 ± 4.1b 33.9 ± 5.2b 38.0 ± 3.8b 4990.9 ± 434.5a

Non-testis-enriched genes

Col1a2 3456.8 ± 240.3a 2132.2 ± 104.3b 604.7 ± 72.6c 280.0 ± 29.2c

Zbtb16 98.2 ± 19.2b 254.2 ± 18.0a 61.7 ± 16.1bc 32.8 ± 2.9c

Means ± SEM are shown. Different superscript letters indicate significant differences between developmental time points.

https://doi.org/10.1371/journal.pone.0175787.t004
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of a fertilization promoting peptide that regulates sperm capacitation in the mouse [22].

EFHC1 has been found in mouse sperm flagella and is present in motile cilia, but not in immo-

tile cilia [23]. In this study, EFHC1 was expressed in cytoplasmic regions of testicular cells. It

suggests that EFHC1 may be associated with germ cell development and sperm motility.

TCFL5 has been found in the testis during spermiogenesis, and it is associated with spermato-

genesis and the formation of sperm flagellum in the mouse [24]. YBX2, also known as contrin,

is a germ cell specific protein and required for the formation of functional spermatozoa and

has been implicated as a potential cause of azoospermia [25, 26]. ZMYND10 has been found in

motile cilia of Drosophila, and it is associated with male fertility [27]. STAG3 is the meiosis-

specific cohesion subunit and is associated with meiotic division of gametes [28].

Some proteins expressed in the acrosome or cytoplasmic region of

spermatids of human testis were presented

The acrosome reaction is required for zona pellucida penetration and fertilization with oocytes

[29], and four proteins, ZPBP [30], ACTL7A (T-ACTIN2), ACTL7B (T-ACTIN1), and

SPATA6, were localized in the acrosome or cytoplasmic region of spermatids (Fig 2B), impli-

cating their roles in fertility. Other proteins that may also be involved in spermatogenesis dur-

ing the spermatid phase are shown in Fig 2D. ODF1 is one of the heat shock proteins that play

an important role as molecular chaperones in spermatozoa, and it is located in the sperm tails

and supports the flagella motility [31, 32]. GAPDHS is a testis-specific glycolytic enzyme and

generally known to be present in the principal piece of spermatozoa, and it is associated with

ATP production and flagella motility and capacitation [33, 34].

Expression of testis-enriched genes increased during normal testis

development

Those selected testis-enriched proteins were mostly expressed in cells in the late spermatogen-

esis stages. The stage-specific mRNA expression of these genes showed similar patterns as

Fig 4. Signaling pathways associated with testis-enriched proteins. The pathway analysis was

conducted using Pathway Studio (v 11.2.5.9) following a database search based on PubMed/Medline

hyperlink. Pathway inhibition is indicated with flat-headed lines, and activation with arrow-headed lines.

https://doi.org/10.1371/journal.pone.0175787.g004
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shown in the GDS2390 dataset (Table 3). Their expression was further analyzed during the tes-

tis development. During postnatal testicular growth, the proportion of germ cell types in semi-

niferous tubules changes. Before 10 dpp, testes of the mouse (Mus musculus) contain mostly

spermatogonia. Between 21 and 24 dpp (weaning ages), spermatocytes become the most abun-

dant cell type, round spermatids develops as the most advanced germ cells, and in adults, sper-

matids are a predominant cell type stage [35, 36]. Based on the changes in types of

spermatogenic cells, qPCR was performed at the stage of spermatogonia (10 dpp), spermato-

cytes and round spermatids (21 dpp), and spermatids (91 dpp). Our qPCR data showed that

expression of these testis-enriched genes was significantly increased around weaning ages

when spermatocytes and round spermatids are present in testis (Fig 3). Some of them were fur-

ther increased at 91 dpp when the mouse is sexually matured and spermatids are the predomi-

nant form of spermatogenic cells. These expression patterns were consistent with gene

expression profiles in GDS605, GDS606, and GDS607 (Table 4). These results suggest that tes-

tis-enriched genes may be involved in advanced stages of spermatogenesis when spermatocytes

and spermatids are dominant types of spermatogenic cells.

Testis-enriched genes tend to be repressed in diseases associated with

male infertility

Expression of all of these testis-enriched genes was decreased in teratozoospermic patients

compared to normal individuals (S1 Table). Spermatogenic cells are susceptible to impairment

which causes spermatogenic cells to become arrested at a certain developmental stage. For

example, spermatogenic arrest at spermatogonia leads to total germ cell depletion and Sertoli

cell only (SCO) syndrome with a lack of germ cells, arrest at spermatocytes gives rise to azoo-

spermia (no spermatozoa) and oligozoospermia (a reduced number of spermatozoa), and

arrest at spermatids results in teratozoospermia (an abnormal shape of spermatozoa) [37].

Thus, decreased expression of genes enriched in spermatids in this study could be used as bio-

markers for spermatid arrest, teratozoospermia, and subsequent infertility. In addition, polyu-

biquitin knockout mice showed a decreased expression of these testis-enriched genes

compared to wild-types (S1 Table). The ubiquitin-proteasomal pathway (UPP) has been

regarded to be a critical process for the successful maturation of spermatids into spermatozoa

by tagging and degrading proteins related to morphological defects [38]. In addition, post-tes-

ticular presence of ubiquitin plays a role in disposal of defective mature spermatozoa [39, 40].

It has been reported that total knockout of the polyubiquitin gene in mice resulted in a devel-

opmental arrest of spermatogenesis followed by infertility [41]. Therefore, the decreased

expression of testis-enriched genes in polyubiquitin knockout models can be used as an indica-

tor of failure in sperm maturation. A recent study has shown that knockout mice lacking sev-

eral testis-enriched genes were fertile [42]; however, the relationship between these genes and

normal testis development remains to be explored. Genes presented in the current study that

are related to testis development may provide appropriate targets for future knockout studies.

Various signaling pathways in sperm are linked to testis-enriched genes

Pathway analysis, in this study, provided comprehensive insight into the underlying biological

functions and diseases involved in spermatocyte- or spermatozoa-enriched expression. As

such, most of spermatocyte- or spermatozoa-enriched proteins being analyzed were implicated

in a variety of sperm functions, including motility and capacitation, and multiple disease con-

ditions such as infertility. On the other hand, three proteins (ZMYND10, ACTL7B, and

TCFL5) out of those 15 spermatocyte- or spermatozoa-enriched proteins were not implicated

in the biological conditions possibly due to incomplete functional annotations (Fig 4).
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In conclusion, testis-enriched genes were found based on GEO profiles, and among them,

protein localization of 15 genes was identified using the Human Protein Atlas. Mostly, these

testis-enriched proteins were expressed in spermatocytes and/or round spermatids, and their

expression significantly increased during testis development. In testicular disease conditions,

expressions of these genes were significantly decreased suggesting their relation to normal

spermatogenesis and testis development. Moreover, in our pathway analysis, most of these

proteins exhibited multiple biological implications related to sperm function. Future studies

should ascertain the potential involvement of these testis-enriched genes in male infertility.
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